Buffer layer development for coated conductors using the IBAD-MgO template

Quanxi Jia, Steve Foltyn, Paul Arendt, Terry Holesinger, Randy Groves, Marilyn Hawley, Raymond DePaula, Yates Coulter, Paul Dowden, Liliana Stan

> Superconductivity Technology Center Los Alamos National Laboratory

Buffer material plays a major role in determining the performance of YBCO films on metal substrates

Requirements for the buffer

- Structural compatibility crystallographic lattice match between the HTS film and the template
- Thermal stability stable in high temperature oxidizing environment
- Chemical stability minimal chemical interaction between the buffer and adjacent layers
- Barrier capability provide a sufficient barrier against interdiffusion

Buffer materials on MgO

- ➤ SrTiO₃ (Ba_{1-x}Sr_xTiO₃)
- ightharpoonup CeO₂/YSZ
- ightharpoonup LaMnO₃ (La_{1-x}Sr_xMnO₃)

Our goal – to develop a stable, effective, and single buffer layer on IBAD-MgO on Ni-alloy for coated conductors

Many unique properties of SrRuO₃ make it attractive for use in coated conductors

Pseudocubic perovskite $SrRuO_3$ (a = 3.93 Å) Orthorhombic distortion a/b = 1.006, $c/(a^2 + b^2)^{1/2} = 1.000$ a = 5.573 Å, b = 5.538 Å, c = 7.856 Å

- Structurally and chemically compatible with YBCO and MgO
- Excellent diffusion barrier properties
- Good thermal stability
 - ✓ Compositionally stable at a temperature as high as 850 °C.
- ➤ High chemical corrosion resistance
 - ✓ Resistant to attack by strong acids

Successful growth of SrRuO₃ thin films and as a buffer layer for YBCO dates from the early days of HTS

- ➤ High crystalline quality epitaxial SrRuO₃ films on SrTiO₃ were demonstrated by AT&T Bell Labs (Eom *et al.*, Science, **258**, 1766, (1992)).
- ► High quality YBCO films were obtained on structurally and chemically compatible SrRuO₃/LaAlO₃ substrates by LANL (Wu *et al.*, Appl. Phys. Lett. **62**, 2434 (1993)).
- Epitaxial barriers of SrRuO₃ were used to fabricate high-temperature superconductor/normal-metal/superconductor Josephson junctions by Conductus Inc. (Antognazza *et al.*, Appl. Phys. Lett. **63**, 1005 (1993)).
- Epitaxial YBCO films were deposited on single crystal MgO using SrRuO₃/Pt buffer layers by LANL (Tiwari *et al.*, Appl. Phys. Lett., **64**, 634 (1994); US patent from LANL, # 5,470,668, Nov. 1995).

X-ray diffraction reveals that SrRuO₃ aligns perfectly on single-crystal MgO

φ-scans on (132) of SrRuO₃ and (101) MgO

The reciprocal lattice points on (001) plane

SrRuO₃ grown on IBAD-MgO on Ni-alloy shows the same orientation relationship as that grown on crystal MgO

 $(001)_{SRO}||(001)_{MgO}; <110>_{SRO}||<100>_{MgO}$

in-plane FWHM ~ 3.7° has been measured for SrRuO₃

SrRuO₃ grown on IBAD-MgO on Ni-alloy shows smooth surface and relatively large grain size

Clean interface between the MgO template and the SrRuO₃ buffer

SrRuO₃ epitaxially grown more favorably compared to SrTiO₃ on IBAD-MgO surface

YBCO films on SrRuO₃/IBAD-MgO on Ni-alloy have typical field and angle dependent superconducting properties

Much improved in-plane texture of YBCO when SrRuO₃ is used as a buffer on IBAD-MgO template

SrRuO₃ planarizes surface irregularities on the IBAD-MgO template on Ni-alloy substrate

SrRuO₃ on IBAD-MgO exhibits superb chemical stability in the presence of hydrofluoric acid and water

Summary: SrRuO₃ proved to be an excellent buffer on IBAD-MgO for coated conductors

- Structurally compatible with YBCO conductor and MgO
- Chemically stable at processing conditions
- Insensitivity to the in-plane texture of the MgO
- Much improved YBCO in-plane texture over MgO
- Smooth out the variations in the MgO on Ni-alloy
- Superb chemical stability in the presence of hydrofluoric acid and water
- Page 3. By using a single buffer $SrRuO_3$ with a thickness of less than 50 nm, $J_c > 1$ MA/cm² has been *routinely* achieved for over 1 μm thick YBCO films on IBAD-MgO on Ni-alloy.

